1. A rocket is launched from the ground and follows a parabolic path represented by the equation \(y = -x^2 + 10x \). At the same time, a flare is launched from a height of 10 feet and follows a straight path represented by the equation \(y = -x + 10 \). Using the accompanying set of axes, graph the equations that represent the paths of the rocket and the flare, and find the coordinates of the point or points where the paths intersect.

2. A pelican flying in the air over water drops a crab from a height of 30 feet. The distance the crab is from the water as it falls can be represented by the function \(h(t) = -16t^2 + 30 \), where \(t \) is time, in seconds. To catch the crab as it falls, a gull flies along a path represented by the function \(g(t) = -8t + 15 \). Can the gull catch the crab before the crab hits the water? Justify your answer. [The use of the accompanying grid is optional.]
3. The price of a stock, \(A(x) \), over a 12-month period decreased and then increased according to the equation \(A(x) = 0.75x^2 - 6x + 20 \), where \(x \) equals the number of months. The price of another stock, \(B(x) \), increased according to the equation \(B(x) = 2.75x + 1.50 \) over the same 12-month period. Graph and label both equations on the accompanying grid. State all prices, to the nearest dollar, when both stock values were the same.